На главную



Математическая энциклопедия
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я
МОРСА ФУНКЦИЯ

- гладкая функция, обладающая нек-рыми специальными свойствами. М. ф. возникают и используются в Морса теории.

Пусть - гладкое гильбертово полное (относительно нек-рой римановой метрики) многообразие (напр., конечномерное), край к-рого является несвязным объединением (возможно, пустых) многообразий V0 и V1 . М. ф. триады - такая гладкая (класса по Фреше) функция (или ) при , что:

1)

2)все критические точки функциилежат в и невырождены;

3) условие СПале - Смейла (см. [2], [3]): на любом замкнутом множестве , где функция f ограничена, а нижняя грань функции равна нулю, существует критич. точка функции f. Напр., если функция f собственная, т. е. все множества компактны (что возможно только при ), то f удовлетворяет условию С. М. ф. достигает минимума (глобального) на каждой компоненте связности многообразия W. Если многообразие V конечномерно, то для множество М. ф. класса является множеством 2-й категории (а если Wкомпактно, то даже плотным открытым множеством) в пространстве всех функций

в -топологии.

Лит.:[1] Morse M., The calculus of variations in the large, N. Y., 1934; [2] Palais R., "Topology", 1963, v. 2, p. 299-340; [3] Smale S., "Ann. Math.", 1964, v. 80, p. 382-96.

M. M. Постников, Ю. В. Рудяк.



Оригинал статьи 'МОРСА ФУНКЦИЯ' на сайте Словари и Энциклопедии на Академике